Apple、ユーザーの手の動きを検出する特許を取得


はじめに

Appleが新たに取得した特許「Electrodes for gesture recognition」(2024年8月6日登録)は、手首に装着するデバイスに組み込まれた柔軟なバンドを用いて手のジェスチャーを認識する技術です。筋肉の電気信号を検出することで、手の動作を詳細に把握し、スマートウォッチなどのデバイス操作を可能にします。

https://www.j-platpat.inpit.go.jp/c1801/PU/US-B-012056285/50/ja

従来技術の問題点

従来のジェスチャー認識システムは、カメラや赤外線センサーを用いて手の動きを検出することが多く、視界の制約やハードウェアの複雑さが問題となっていました。また、ウェアラブルデバイスを用いる場合でも、硬い電極や接触不良などが原因で、精度や使い勝手が低下するという課題がありました。この特許はこれらの問題を解決することを目的としています。

特許の概要

この発明は、手首のバンド内に織り込まれた複数の電極を使用し、筋電図(EMG)信号をキャプチャして手の動きを認識します。EMG信号は筋肉や腱が収縮する際に発生する電気信号で、これを用いて手の細かな動きをリアルタイムで検出します。例えば、手の開閉や手首の回転、指の曲げ伸ばしなどが検出可能であり、これらの動作を利用してデバイスの操作が行えます。以下、図面を参照しながら、この特許の紹介をしていきます。

図1:手の動作例

図1は、ユーザーが実行可能な手の動作を示しています。手首の屈曲、伸展、回外、回内、橈骨(とうこつ)偏位、尺骨(しゃっこつ)偏位など、複数の動作が図解されています。

図2:筋肉と腱の位置

図2では、これらの動作を実行する際に関与する前腕の筋肉と腱の位置が示されています。手首と前腕の筋肉の活動を通じて、手の動作に対応する電気信号が生成されます。

図3:柔軟なバンドにおける電極の配置例

図3A〜3Dは、スマートウォッチ、アクティビティトラッカー、ファッションアクセサリー、およびAR/VR用グローブなど、様々なデバイスにおける電極の配置例を示しています。これらのデバイスには、柔軟なバンドに織り込まれた電極が含まれ、手の動作を検出するための信号を取得します。

図4:システムブロック図

図4は、電極から取得した信号を処理するためのシステム全体の構成を示しています。デバイスのハウジングに内蔵された処理回路とバンドの電極が連携し、リアルタイムで手の動作を認識します。

このシステムは、手首に装着されたデバイスの内部構造を示しており、主要な構成要素として以下のものが含まれます。

1. 生理学的電極(430): 手首のバンド上に配置され、ユーザーの筋肉や腱の電気信号(EMG)を測定します。
2. データバッファ(440): 電極から取得した生理信号を一時的に格納します。
3. デジタル信号処理装置(DSP 442): バッファに保存された信号を処理し、筋電図(EMG)信号を分析します。
4. ホストプロセッサ(444): DSPからのデータを受け取り、さらなる解析を行います。処理結果に基づき、ユーザーインターフェースを制御したり、デバイス操作を実行したりします。
5. プログラム記憶装置(446): システムの制御プログラムやユーザーの動作に関するデータを格納しています。
6. タッチスクリーン(448): 解析された情報を表示し、ユーザーからの入力を受け取ります。

これらのコンポーネントが連携して、電極で取得した生理信号を解析し、ユーザーの手の動きやジェスチャーを認識するシステムを構築しています。

図5:バンドとハウジングの接続

図5A、5Bは、バンド内の電極がどのようにしてハウジングと接続されるかを示しています。特に、図5Bでは、バンドの端にあるコネクタとハウジング内の接続部が詳細に説明されています。

図6:コネクタの詳細

図6A〜6Cは、バンド内のコネクタがハウジング内の接続部にどのようにして物理的に接続されるかを示しています。この接続により、電極の信号がデバイスの内部回路に伝達されます。

図7:電極と処理回路の構成図

図7では、複数の電極がどのようにして処理回路と接続されるか、またどのように測定が行われるかが詳細に説明されています。各電極は異なる入力を取得し、複数の測定回路に接続され、これらの信号が集約されます。

1. 電極(730および762)
・手首のバンドやデバイスのハウジングに配置され、ユーザーの手や手首の筋肉活動を検出します。
・各電極は測定のために異なる回路に接続され、測定精度を高めるために動的に配置が変更されます。

2.マルチプレクサブロック(784)
・電極と測定回路の接続を動的に切り替える役割を果たします。
・これにより、各電極ペアの測定が可能になり、さまざまなジェスチャーや動作を認識できます。

3.アナログフロントエンド(AFE)回路(782)
・マルチプレクサを介して入力された電極信号を処理し、増幅・フィルタリングを行います。
・各AFEは、差動測定回路として機能し、電極間の電圧差を測定します。

4.プロセッサ(780)
・各AFE回路から得られたデータを集約し、ジェスチャーや動作を認識するための処理を行います。
・プロセッサは、各電極の動的な役割の設定や、測定結果に基づく動作指示を行います。

5.メモリ(786)
・測定データや、認識されたジェスチャーに対応する情報を格納します。
・プロセッサとの連携により、動的なデータ処理をサポートします。

動作の流れ

1. 電極の動的設定
・プロセッサが各電極の役割(アクティブまたは参照)を設定し、マルチプレクサを介して回路に接続します。

2. データ取得
・AFEが電極間の差動信号を測定し、デジタル信号に変換します。

3. ジェスチャー認識
・プロセッサがデータを解析し、特定の手の動きをジェスチャーとして認識します。

この回路は、手首や手の複雑な動きを高精度に認識することを可能にし、ウェアラブルデバイスの操作性を大きく向上させることができます。また、低消費電力モードと高精度モードを動的に切り替えることで、バッテリー消費を抑えつつ、必要なタイミングで詳細な動作解析を行うことができます。

図8:生理信号の測定回路

図8は、各電極から取得された信号が、どのように増幅され、デジタル化されるかを示しています。これにより、EMG信号を基にしたジェスチャー認識が行われます。

1.電極(830, 864):
・デバイスのバンドやハウジングに配置され、ユーザーの筋肉活動から発生する生理信号(筋電図、EMG)を検出します。
・一つの電極(830)はアクティブ電極、もう一つ(864)は参照電極として機能します。

2.差動測定回路(860):
・アクティブ電極と参照電極間の差動信号を測定します。
・測定信号は増幅器(876)を通り、アナログ・デジタル変換器(ADC 878)でデジタル化されます。

3.プロセッサ(880):
・デジタル化された信号を解析し、手の動きやジェスチャーを認識します。

具体的な動作

1.測定開始:
・電極830と864がユーザーの手首に接触し、生理信号を検出。

2.信号増幅とデジタル化:
・差動増幅器(876)が電極間の電気信号を増幅し、ADC(878)でデジタル信号に変換。

3.信号解析:
・プロセッサ(880)がデジタル信号を受け取り、ジェスチャーや手の動きを解析し、対応するデバイスの操作を実行。

この回路設計により、手首や手の動きを詳細に検出し、高精度なジェスチャー認識を実現しています。

図9:ジェスチャー認識のフロー図

図9では、ジェスチャー認識のフローが示されており、各電極の測定結果がどのようにしてジェスチャーに変換されるかが説明されています。

1.測定方法の選択(988):
・デバイスが低消費電力モード(粗検出)または高精度モード(詳細検出)を選択し、測定方法を決定します。

2.電極の選択と設定(990):
・マルチプレクサを使用して、特定の電極ペアを測定回路に接続し、差動測定を行います。

3.測定と再設定(992, 994):
・電極ペアの差動測定を行い、必要に応じて他の電極ペアに切り替えます。

4.ジェスチャー認識(996):
・取得した測定結果を既知のジェスチャーパターンと比較し、対応する動作を認識します。

用語の解説

・筋電図(EMG): 筋肉が活動する際に発生する電気信号を測定する技術。手首の動きを詳細に捉えるために用いられます。
・差動増幅器: 入力される2つの信号の差を増幅する回路で、ノイズの影響を低減し、信号を強調する役割を果たします。
・多重化器(マルチプレクサ): 複数の入力を選択し、1つの出力に切り替える回路。多くの電極からのデータを効率よく処理するために使用されます。

この技術の意義と展望

この技術は、ユーザーの手の動きを自然な形で検出し、ウェアラブルデバイスを用いた新しいインターフェースを実現します。将来的には、スマートウォッチやAR/VRデバイスのジェスチャー操作、さらには身体の他の部位の動作検出にも応用が期待されます。今後の発展により、私たちの日常生活におけるデバイス操作の在り方が大きく変わるかもしれません。


ライター

+VISION編集部

普段からメディアを運営する上で、特許活用やマーケティング、商品開発に関する情報に触れる機会が多い編集スタッフが順に気になったテーマで執筆しています。

好きなテーマは、#特許 #IT #AIなど新しいもが多めです。




Latest Posts 新着記事

知財分析に地殻変動:Patentfieldが中韓データ標準化を実現

はじめに 企業がグローバル市場で競争力を維持・強化するうえで、知的財産(IP:Intellectual Property)の戦略的な活用は欠かせません。特許情報の分析は、新たな事業機会の発見、研究開発の方向性決定、競合の動向把握など、多様な意思決定の根拠となります。その中で、知財分析プラットフォームとして多くの企業や研究機関に支持されてきた「Patentfield(パテントフィールド)」が、このた...

iPhoneの次はこれ?アップルが仕掛けるAIウェアラブル革命

2025年5月、米Apple(アップル)が出願した新しい特許資料が公開され、テック業界やウェアラブル技術の未来に関心を持つ多くの人々の間で話題となっている。その内容は、従来のスマートウォッチやARグラスの枠を超える、まさに「身体拡張」と呼ぶにふさわしい次世代のAIウェアラブルデバイスに関するものだった。 本稿では、特許から読み取れるデバイスの可能性、他社動向との比較、そしてアップルが目指すであろう...

エーザイ、レンビマ特許訴訟に勝訴 知財強化で収益基盤を防衛

2024年3月、日本の製薬大手エーザイ株式会社は、同社が開発・販売する抗がん剤「レンビマ(一般名:レンバチニブ)」に関する米国での特許侵害訴訟において、インドの大手後発医薬品メーカーであるサン・ファーマシューティカル・インダストリーズ(Sun Pharmaceutical Industries Ltd.)との間で和解に至ったことを発表した。この訴訟での勝訴は、単なる一製薬企業の勝利にとどまらず、国...

「宇宙旅行OS」が誕生──スペースデータ、次世代ステーション統合特許を取得

2025年、宇宙ビジネスのフロンティアを牽引する日本企業「スペースデータ株式会社」が、宇宙ステーションの統合管理から宇宙旅行の予約・運用システムに至るまでを包括的にカバーする特許を取得した。これは単なる技術的成果にとどまらず、宇宙産業全体の未来像を方向づけるマイルストーンとなり得る重要な出来事である。 本コラムでは、スペースデータ社の取得した特許の概要、技術的・社会的な意義、そしてそこから見えてく...

ステランティス、ブラジルで特許出願急増 3倍増で革新の最前線へ

2024年、ステランティスはブラジルにおいて目覚ましい成果を収めた。特許出願数が前年比で3倍に達し、国内企業としては第3位という快挙を成し遂げたのである。これは単なる数字の増加ではなく、同社が南米、特にブラジルを次世代モビリティの技術革新の中核と位置づけ、グローバルな戦略拠点として本格的に機能させ始めていることを示す重要な指標だ。 ブラジルでの研究開発強化 ステランティスが急速に特許出願数を増やし...

知財リノベーション:老舗企業に求められる特許戦略の転換

はじめに:増え続ける「数」の先にあるもの 日本は長年にわたり、技術立国として数多くの特許を生み出してきた。特に1980年代から1990年代にかけては「知財大国」として世界を牽引していたが、21世紀に入り、特許出願件数が急増する一方で、その“質”への懸念が深まっている。いま、企業は単なる特許の“数”ではなく、社会的価値や経済的インパクトを持つ“質”を問われる時代に突入しているのだ。 この流れの中で、...

知財戦略の先に未来がある ― IT企業の特許から見る国際競争力

近年、IT業界のグローバル競争は激化の一途をたどっている。GAFAを筆頭に、中国BAT(Baidu, Alibaba, Tencent)や新興のスタートアップが覇権を争う中、各社がグローバル市場での競争優位を築くために重視しているのが「知的財産」、特に「特許」である。特許は単なる技術の保護にとどまらず、国際戦略の可視化、競合排除、M&Aの交渉材料としても機能する。各社がどの分野にどのような...

ジェネリックに逆風?東レ新薬が特許侵害で沢井製薬に大勝利

2025年5月、知的財産高等裁判所(知財高裁)は、東レ株式会社が起こした特許権侵害訴訟において、沢井製薬株式会社をはじめとするジェネリック医薬品メーカーに対して、217億円の損害賠償を命じる判決を下した。このニュースは製薬業界関係者を驚かせるとともに、日本の知財制度と医薬品政策のあり方について、改めて深い議論を呼び起こす契機となっている。 本稿では、この判決の背景、判決が意味するもの、そして今後の...

View more


Summary サマリー

View more

Ranking
Report
ランキングレポート

中小企業 知財活用収益ランキング

冒頭の抜粋文章がここに2〜3行程度でここにはいります鶏卵産業用機械を製造する共和機械株式会社は、1959年に日本初の自動洗卵機を開発した会社です。国内外の顧客に向き合い、技術革新を重ね、現在では21か国でその技術が活用されていますり立ちと成功の秘訣を伺いました...

View more



タグ

Popular
Posts
人気記事


Glossary 用語集

一覧を見る