日本のメタンハイドレート採掘


日本の近海に潜む資源として注目されているメタンハイドレートは、エネルギー業界にとって大きな可能性を秘めています。このコラムでは、特許の側面から、メタンハイドレート採掘技術の最先端をみてみようと思います。

まず、メタンハイドレートは、海底の一定の深度と圧力下で形成される氷のような物質で、メタンガスを豊富に含んでいます。日本の周辺海域には、これらのメタンハイドレートが豊富に存在しており、その埋蔵量は世界的にも非常に大きいとされています。

ここで、メタンハイドレートと一口に言っても、大きく分けて「砂層型メタンハイドレート」と「表層型メタンハイドレート」の2つに分けられます。「砂層型」は、水深500メートル以深の海底面下数百メートルの砂質層内に砂と混じり合った状態で存在し、主に太平洋側の東部南海トラフ海域を中心に存在が確認されており、「表層型」は、水深500メートル以深の海底面及び比較的浅い深度の泥層内に塊状で存在し、主に日本海側を中心に存在が確認されています。

このうち、現在特に注目されているのが「表層型メタンハイドレート」です。平成25年度から平成27年度にかけて行われた資源量把握のための調査では、日本海上越沖にはメタンガス換算で約6億立方メートルに相当する表層型メタンハイドレートが存在すると推定されました。砂層型に比べて回収の難易度が低いことが想定され、経済産業省を筆頭に2027年度に商業化を目指して、回収技術の開発や環境影響調査等が行われています(コロナ禍でスケジュールが若干遅れているようですが)。

これまで、メタンハイドレートの採掘には多くの困難が伴うとされてきました。まず、その存在する深海には高い圧力と低い温度が支配的であり、採掘作業自体が非常に困難です。また、メタンハイドレートは非常に不安定であり、採掘中にガスが急速に放出される可能性があります。これにより、環境への影響や安全上の懸念が生じます。

しかしながら、最新のテクノロジーの進歩により、これらの困難に対処する道が開けつつあります。例えば、海中ドローン等に自律型機器を搭載したロボットによって、深海での採掘作業を行うことが可能になりつつあります。これにより、人間の安全を確保しつつ、効率的かつ環境に配慮した採掘が可能となるでしょう。

 また、商業化に向けた計画も進行中です。上述のとおり、政府やエネルギー企業は、2027年度までにメタンハイドレートの商業化を目指し、関連する研究開発を積極的に推進しています。これには、採掘技術の開発や環境影響の評価、ガスの生産・供給体制の整備などが含まれています。

 メタンハイドレートに関する特許をみてみると、この分野で研究開発が最も進んでいるのは国立大学法人東京海洋大学だと言えそうです。最近でも、下記の5つの特許出願が確認できます。
・特開2022-154400(地盤試料採取装置、ガイド体および地盤試料採取方法)
・特開2021-117192(水底地盤引上げ試験装置および水底地盤引上げ試験方法)
・特開2020-090842(メタンハイドレート混合模擬地盤、メタンハイドレート掘削模擬実験装置、メタンハイドレート混合模擬地盤の製造方法、およびメタンハイドレート模擬地盤の製造方法)
・特開2020-056728(シュー装置、水底地盤貫入試験装置、および水底地盤貫入試験方法)
・特開2019-143309(ガスハイドレート採掘装置および採掘方法)

例えば5つめの「特開2019-143309」をみてみると、表層型メタンハイドレートにターゲットをしぼり、海底面下の浅部ないし深部の地盤や寒冷地の深部地盤に存在するメタンハイドレート層(MHL)を採掘する装置についての特許出願が行われています。

このような海底の比較的浅い部分を採掘する装置は、装置として大掛かりにもならず、ターゲットとするMHLにほぼダイレクトにアクセスするため、海底に土捨て場を設ける必要をなくすことができます。また、掘削坑内に存置される土砂の土圧により、掘削坑の壁面の安定性を高めることができる結果、地盤の強度によっては、安定液を用いずに掘削を行うことも可能になるため、経済的で環境への影響が少ないメタンハイドレートの掘削を行うことができます。また、小型であるため立坑(掘削坑)や周辺斜面などの周辺地盤の崩壊を引き起こさず、さらに土砂の巻き上げによる周辺海域(水域)の濁りを抑制することもできるのです。

もちろん、このような採掘が海底でうまくいくかを実験室内でシミュレーションする技術も必要で、その点については3つめに挙げている「特開2020-090842」で検討がされています。

上図は、メタンハイドレートを含む海底地盤を模擬するためのメタンハイドレート混合模擬地盤10で、地盤材11と、地盤材11に混合された模擬メタンハイドレート12と、を備え、模擬メタンハイドレート12は、大気圧、および模擬海水の凝固点よりも高い温度環境下において固体状態であり、模擬海水との比重差がメタンハイドレートと海水との比重差以上である模擬ハイドレートです。

東京海洋大学の他にも、企業では例えばJFEエンジニアリング株式会社は、表層型メタンハイドレートを水底で採掘し、海上へ搬送するためのコンテナについての特許出願をしています(特開2019-178560)。

このように、メタンハイドレートの採掘技術については、日本において非常に重要かつ「ホット」な技術であり、その研究開発は着々と進んでおり、成果も得られつつあります。しかしながら、商業化までにはまだ課題が残っています。技術の向上と同時に、環境への影響や安全性の確保についても避けては通れない課題です。また、メタンハイドレートの採掘に対しての、経済的な側面でも課題があります。これらの問題に対して、継続的な研究開発と国際協力、国を挙げての支援が不可欠でしょう。

メタンハイドレートの商業化は、日本のエネルギー独立性や地域経済の発展にとって重要な要素となります。一方で、環境への影響や安全性の確保は決して軽視できない問題です。持続可能な開発と利用を追求しつつ、技術の進歩と研究開発の促進が求められます。

日本のメタンハイドレート採掘は、将来への挑戦として注目される分野です。最新のテクノロジーの進歩により、採掘の困難性への対応が進んでいますが、まだ多くの課題が残されています。商業化に向けた計画は進行中であり、継続的な研究開発と国際協力が不可欠です。持続可能なエネルギーの実現を目指し、メタンハイドレートの採掘に対する取り組みを進めるべきといえるでしょう。


ライター

+VISION編集部

普段からメディアを運営する上で、特許活用やマーケティング、商品開発に関する情報に触れる機会が多い編集スタッフが順に気になったテーマで執筆しています。

好きなテーマは、#特許 #IT #AIなど新しいもが多めです。




Latest Posts 新着記事

キヤノン参戦!? 新特許が示す“シネマ級スマホ”の衝撃

世界的なカメラメーカーであるキヤノンが、ついにスマートフォン市場へ参入するのではないか―そんな観測が特許情報をきっかけに広がっている。これまでカメラ業界をけん引してきた同社がもしスマホ分野に本格的に乗り出すとすれば、その意味は非常に大きい。単なる「カメラが強いスマホ」ではなく、映画撮影レベルの表現力を一般消費者の手のひらに届ける可能性があるからだ。ここでは、新たに明らかになった特許の内容や、カメラ...

高精細×省電力を両立 半導体エネ研の酸化物半導体特許が拓く未来

近年、スマートフォンやタブレットに加え、テレビやパソコン用ディスプレイ、さらには車載ディスプレイに至るまで「大画面化」の潮流が加速している。高精細かつ省電力を両立したディスプレイが求められる中、バックプレーン技術の要となる半導体材料として、酸化物半導体が再び注目を浴びている。 こうした状況下で、半導体エネルギー研究所(半導体エネ研)が、大画面パネル向けの酸化物半導体技術に関する新たな特許を取得した...

I-ne、東大と共同で「化粧品用マイクロニードル技術」を特許出願 株価後場に上昇

化粧品ブランド「BOTANIST」や「YOLU」を展開するI-ne(アイエヌイー、東証グロース上場)は、東京大学との共同研究の成果として「新規化粧品用途におけるマイクロニードル技術」を特許出願したことを明らかにした。この発表を受け、同社株は後場に入り上げ幅を拡大。投資家からは「技術力の裏付けとなる知財戦略が進展した」との評価が寄せられている。 ■ マイクロニードル技術とは何か マイクロニードルとは...

EV急速充電の主導権争い シリコン負極材で韓国勢が優位に

電気自動車(EV)の普及において最大の課題の一つが「充電時間」である。ガソリン車に比べて充電に時間がかかることは、ユーザー体験を損ねる要因となってきた。しかし近年、バッテリー技術の革新、とりわけ「シリコン系負極材」の実用化が進むことで、急速充電の実現に大きな期待が寄せられている。こうした中、韓国のLGエナジーソリューション(LGES)やSKオンが、関連する特許ポートフォリオの拡充によって、中国最大...

知財で支える防災社会──特許技術がもたらす安全と創意

知財を活用して防災を支える技術と創意の力 私たちの生活は、地震、台風、豪雨、火山噴火といった自然災害の影響を受けやすい環境にあります。災害によって命や財産が脅かされるだけでなく、社会インフラや経済活動にも大きな影響を与えます。こうした脅威に備えるためには、防災技術の開発や迅速な対応が不可欠ですが、近年では「知的財産(知財)」の活用が防災力向上に大きく寄与することが注目されています。 特許技術が支え...

トランスG、欧州で画期的エクソンヒト化マウス特許取得 創薬研究の未来を切り拓く

株式会社トランスジェニック(以下、トランスG)は、2025年6月に「エクソンヒト化マウス」に関する特許を欧州で取得したことを発表しました。この技術は、従来のヒト化マウスモデルの課題を克服し、疾患研究や創薬支援において新たな可能性を開くものとして注目されています。本稿では、この技術の概要、適用例、特許取得の意義、技術的背景と課題、今後の展開について詳述します。 1. エクソンヒト化マウス技術の概要 ...

小学生のひらめきが社会を動かす ― 特許庁が後押しする“未来の発明家”

「自由研究」という言葉を聞くと、多くの人が夏休みの宿題を思い出すだろう。工作や観察、調べ学習など、その内容は千差万別だが、子どもならではの柔軟な発想が光る場面も多い。今年、そんな小学3年生の自由研究から生まれた“特殊なストロー”が注目を集めている。さらに、そのアイデアは特許庁による後押しを受け、本格的に知的財産としての保護を目指すこととなった。この出来事は、単なる「子どもの作品」にとどまらず、未来...

iPhone連携で実現する新方式 ― Apple Watch血中酸素機能の米国再解禁

Appleは2025年8月14日、米国市場において「血中酸素(Blood Oxygen)」計測機能をApple Watchに再導入することを発表しました。対象となるのは Apple Watch Series 9、Series 10、そして Apple Watch Ultra 2 であり、ソフトウェアアップデートによって利用が可能になります。これは単なる機能復活ではなく、従来の方式を見直し、iPho...

View more


Summary サマリー

View more

Ranking
Report
ランキングレポート

海外発 知財活用収益ランキング

冒頭の抜粋文章がここに2〜3行程度でここにはいります鶏卵産業用機械を製造する共和機械株式会社は、1959年に日本初の自動洗卵機を開発した会社です。国内外の顧客に向き合い、技術革新を重ね、現在では21か国でその技術が活用されていますり立ちと成功の秘訣を伺いました...

View more



タグ

Popular
Posts
人気記事


Glossary 用語集

一覧を見る